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Abstract

Epidemiological models formulated to describe the transmission of the disease and to predict future
outbreaks, can become an interesting tool able to address specific public health questions, guiding public
health authorities during implementation of disease control measures such as vector control and vaccination.
In this paper, we survey a model framework for dengue fever epidemiology, the most important viral mosquito-
borne disease in the world. Here, we discuss the role of number of subsequent infections versus detailed number
of dengue serotypes included in the model framework and the human immunological aspects associated to
disease severity, identifying the implications for model dynamics and its impact for vaccine implementation.
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1. INTRODUCTION

In recent years, mathematical modeling became an important tool for understanding infectious disease
epidemiology and dynamics, leading to great advances for disease control, providing tools for assessing the
potential impact of different public health intervention measures. Dengue fever epidemiological dynamics
shows large fluctuations in disease incidence, and several mathematical models describing the transmission
of dengue viruses have been proposed to explain the irregular behavior of dengue epidemics.

With about 400 million dengue infections occurring every year [1], the disease is now considered the most
important viral mosquito-borne disease in the world. Dengue fever is caused by four antigenically related but
distinct serotypes (DENV-1 to DENV-4). Infection by one serotype confers life-long immunity to that serotype
and a period of temporary cross-immunity to other serotypes. Clinical response on exposure to a second
serotype is complex and may depend on factors such as patient age, dengue serotype, sequence of infection
and the interval between infection by one serotype and exposure to a second serotype. Sequential infection
increases the risk of developing severe dengue, due to a process described as antibody-dependent enhancement
(ADE), where the pre-existing antibodies to previous dengue infection enhances the new infection [2], [3],
[4].

Dengue fever epidemiological dynamics shows large fluctuations in disease incidence, and several math-
ematical models describing the transmission of dengue viruses have been proposed to explain the irregular
behavior of dengue epidemics. Most of the models developed try to incorporate factors focusing on several
different aspects of the disease combined with biological aspects of the vector and possible intervention
measures, leading to a higher dimensional systems with hundreds of parameters that would need to be
estimated from fewer available empirical data. The problem becomes mathematically difficult and to be
predictive and not get lost in unnecessary components of a model, parsimony is often needed.

A careful review of deterministic dengue modeling was recently published [5], where two main approaches
were considered, the vector-host and the (indirect) host-to-host transmission. In the first approach, the
fluctuations in the mosquito dynamics and climate change are included and assumed to affect the disease
transmission [6], [8], while in the second approach the effect of seasonality (mimicking the vectorial dynamics)
appear to be essential to explain the intra-annual fluctuations in disease cases [9], [10]. Incidence maps have
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also gained importance in the last years, giving visual insights on disease occurrence [1], [11] and vector
abundance for example [12]; however, this surveillance tool is still difficult to be accurately used in the public
health context of local disease intervention, given their static output (in contrast to the chaotic fluctuations
in disease incidences), their complexity and the need of a constant good data input. The same difficulty
is expected when dealing with more complex models including four different strains and vector dynamics
individual based models and age-structure [13], [14].

In this survey we discuss some modeling framework recently used by the World Health Organization
(WHO) to recommend the newly licensed dengue vaccine. We focus on the biological aspects of dengue
fever epidemiology, identifying its implications for model dynamics and its impact for disease prevention
and control.

2. MULTI-STRAIN DYNAMICS, ANTIBODY-DEPENDENT ENHANCEMENT AND TEMPORARY CROSS
IMMUNITY

Multi-strain dengue dynamics are generally modeled with extended SIR-type models and the combination
of biological aspects such as temporary cross-immunity and the ADE effect have been studied by several
authors. Modeling attention has first focused on higher viral load of hosts on secondary dengue infections
due to ADE, but neglecting temporary cross-immunity, reporting deterministically chaotic attractors [6] and
chaos desynchronization [15], [16] to explain the co-existence of the four dengue viral strains. Temporary
cross-immunity was later incorporated in mathematical models as well, but again limiting the effect of ADE to
increase the contribution of secondary cases to the force of infection, without further systematic investigation
of the possible dynamical structures in these models [8], [13], [17], [18].

Aguiar et al. [19], [20] have investigated a two-infection dengue model, combining the effect of temporary
cross-immunity and ADE, an extension of a model initially suggested and preliminarily analyzed in Ferguson
et al. [6], where a rich dynamical behavior [7], from bifurcations up to deterministic chaos was found in wider
and not previously described parameter regions, no longer needing to restrict the infectivity on secondary
infection to be much higher than on primary infections (see Fig.1).
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Fig. 1: Bifurcation diagrams of attractors changing with one model parameter, the ADE ratio φ. Plotted are local maxima
and minima of the attractors. a) For very small φ we observe fixed points, then periodic behaviour, followed by complex
behaviour for phi smaller 1. Complex behaviour is found again, after periodic windows, for large ADE ratio phi around
3. b) Comparison of the numerical bifurcation diagram with an analysis of bifurcation software, AUTO, revealing the
types of bifurcations, Hopf bifurcation H , pitchfork P and torus bifurcation T from limit cycles into tori from where
more complex behaviour such deterministic chaos originates, until boundary crises again into periodic behaviour.

However, in order to be able to reproduce the yearly cycle in dengue incidence seasonal forcing and a low
import of infected have to be included in the models [9]. The minimalistic model proposed in [9] has shown
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complex dynamics and qualitatively a good agreement between empirical data and model simulation. Note
that for our deterministic system, Lyapunov exponents calculations were performed in order to quantify its
prediction horizon, where beyond this prediction horizon we have unpredictability. For the chaotic region of
φ = 0.9, the dominant Lyapunov exponent is 0.1118 giving ≈ 10 years of prediction horizon in the monthly
time series. In Fig. 2 we present two of the many different matching possibilities, able to describe a 5 year
period of empirical data, from 1983 to 1994 and from 2002 to 2012, respectively, with a good qualitative
(and even quantitative) agreement with our model simulation.
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Fig. 2: Time series analysis. In a) the empirical data for hospital admission cases in Chiang Mai Province, North
of Thailand. In b) the seasonal two-serotype model simulation, showing deterministic chaotic behavior confirmed by a
positive Lyapunov exponent. The prediction horizon in the deterministic system is of approximately 10 years. The model
shows similar pattern as the empirical data, with yearly irregular oscillations. The two-serotype model was validated
and parametrized via data matching. As an example of the many different matching possibilities, we plot in c) and in d)
10 years of time series simulations with empirical data, from 1983 to 1994 and from 2002 to 2012 respectively.

Since then, the restrictive assumption of much higher contribution to the force of infection of secondary
infectivity that was previously necessary to generate complex dynamics could be relaxed significantly when
taking the temporary cross-immunity into account.

The findings of wide ranges of chaotic attractors have opened new ways to the analysis of existing data sets,
indicating that deterministic chaos is much more important in multi-strain models than previously thought.

More than ever, temporary cross-immunity has turned out to be an important biological feature when mod-
eling dengue fever epidemiology and has become an important ingredient for dengue modeling development,
more often used in new modeling approaches [21].
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2.1. The two strain dengue model
The minimalistic two-serotype model proposed by Aguiar et al. [9] is able to capture differences between

primary and secondary dengue infection, including temporary cross-immunity and ADE. Only two possible
infections are considered, primary and secondary, an assumption validated because of the low frequency of
tertiary and quaternary infections among hospital cohorts [29]. The four-serotype model is represented in Fig.
3 using a state flow diagram.

Fig. 3: State flow diagram for two-infection two-serotype dengue model. The Force of Infection (FoI) is explicitly given
by β(I1 + I2 + ρN + φ(I12 + I21), where β takes the seasonal forcing into account as a cosine function β(t) =
β0(1 + η · cos(ωt)), mimicking vector dynamics.

The complete system of ordinary differential equations for the seasonal multi-strain epidemiological model
is shown in system (1).

The effects of the vector dynamics are only taken into account by the force of infection parameters in
the SIR-type model, but not modeling this mechanisms explicitly [30]. The parameter β takes the seasonal
forcing into account as a cosine function.

The temporary cross-immunity period and the recovery rate are parametrized by α and γ respectively. The
population size N is constant and the demography (birth and death rates) is parametrized by µ. Susceptible
individuals can become infected also by meeting an infected individual from an external population contribut-
ing to the force of infection with an import parameter ρ. The parameter φ introduces the ADE ratio, i.e.,
secondary infection contribution to the force of infection. In this way, individuals with a primary infection
and with a secondary infection transmit disease differently, with infection rate β and φβ respectively.

The dynamics of the system is described as follows. For two different strains, 1 and 2, we label the SIR
classes for the hosts that have been infected naturally by individual strains. Individuals start as seronegative
susceptibles (S) and can acquire a natural first infection (I1) or (I2) with a specific dengue serotype.
Individuals recover from a primary infection (R1) or (R2) and after a period of temporary cross-immunity,
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become seropositive (monotypic) susceptibles (S1) or (S2), now immune to one serotype and able to acquire
a natural secondary dengue infection with a different serotype (I12) or (I21). Finally, individuals recover from
a secondary infection (R).

We assume that individuals experiencing a secondary infection are assumed to have higher risk (than
primarily infected individuals) of developing clinically apparent and severe disease with hospitalization. For
a more detailed description, see [9]. The parameter values are given in Table 1.

The minimalistic model successfully described large fluctuations observed in empirical outbreak data (see
Fig. 2), estimating lower infection rate for secondary dengue infected individuals than for primary infected,
anticipating results published recently in Duong et al. [31], where persons with unapparent dengue infections
were more infectious to mosquitoes than clinically symptomatic patients.

Ṡ = −β(t)
N

S(I1 + ρ ·N + φI21)−
β(t)

N
S(I2 + ρ ·N + φI12) + µ(N − S)

İ1 =
β(t)

N
S(I1 + ρ ·N + φI21)− (γ + µ)I1

İ2 =
β(t)

N
S(I2 + ρ ·N + φI12)− (γ + µ)I2

Ṙ1 = γI1 − (α+ µ)R1

Ṙ2 = γI2 − (α+ µ)R2 (1)

Ṡ1 = −β(t)
N

S1(I2 + ρ ·N + φI12) + αR1 − µS1

Ṡ2 = −β(t)
N

S2(I1 + ρ ·N + φI21) + αR2 − µS2

˙I12 =
β(t)

N
S1(I2 + ρ ·N + φI12)− (γ + µ)I12

˙I21 =
β(t)

N
S2(I1 + ρ ·N + φI21)− (γ + µ)I21

Ṙ = γ(I12 + I21)− µR

TABLE I: Parameter set for the minimalistic two-strain dengue model.

Par. Description Values Ref
N population size 1.6million [9]
µ birth and death rate 1/65y [9]
γ recovery rate 52y−1 [9]
β0 infection rate 2 · γ [9]
η degree of seasonality 0.35 [9]
ρ import parameter 0 to 10−10 [9]
α temporary cross-immunity rate 2y−1 [9]
φ ratio of secondary infections

contributing to force of infection 0.9 [9]
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2.2. The four strain dengue model

Further extension of the previously studied model by Aguiar et al. [9] was performed, showing that the
combination of temporary cross-immunity and ADE are the most important feature to drive the complex
dynamics in the system, more than the detailed number of dengue serotypes to be added in the model
[22]. For both models a qualitatively good result were obtained when comparing empirical data and model
simulation, with similar patterns of the irregular behavior (see Fig. 5). The model is represented in Fig. 4
using a state flow diagram.

Fig. 4: State flow diagram for two-infection four-serotype dengue model. The Force of Infection (FoI) is explicitly given
by β(I1 + I2 + I3 + I4 + ρN + φ(I12 + I13 + I14 + I21 + I23 + I24 + I31 + I32 + I34 + I41 + I42 + I43), where β
takes the seasonal forcing into account as a cosine function β(t) = β0(1 + η · cos(ωt)), mimicking vector dynamics.

The system dynamics are similar to the dynamics described for the two-serotype model. Again with only
two possible infections but now with four strains, thus more infection possibilities. For a more detailed
description of the four-serotype model, see [22].

The numerical bifurcation analysis has shown that chaotic dynamics appear to happen at the same parameter
region of interest. For both models, a similar structure and the same order of magnitude of the dominant
Lyapunov exponent were observed. This study has confirmed that the practical predictability of the system
does not change significantly when considering two or four serotypes in the model assumptions, where the
prediction horizon in a time series is in the same range for both models.

3. THE IMPACT OF VACCINE IMPLEMENTATION

Since 2016, a dengue vaccine, Dengvaxia, marketed by Sanofi Pasteur, is licensed for use in 19 endemic
countries. Analysis of phase III trials’ results suggested high rates of protection of vaccinated dengue
seropositive individuals, but also high rates of hospitalizations during breakthrough dengue infections of
persons who were vaccinated when seronegative [23]. The latter result indicates that Dengvaxia appears to
induce dengue infection-enhancing antibodies (ADE) [24]. The availability of a vaccine for dengue with
varying levels of efficacy against the different serotypes and potential counter-effects [25] makes extremely
relevant the assessment of the potential effects of mass vaccination in endemic areas, as well as of different
response policies in case of new vaccine licensure and implementation.
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Fig. 5: Using the same parameter set, in a) the two-serotype model simulation and in b) the four-serotype model
simulation. Parameter values are given in Table 1. For both models, similar patterns are observed with yearly irregular
behavior and same prediction horizon estimated by the Lyapunov exponents’ calculations. The effective dimension of
the two serotype model is 9 while of the four serotype model 25. The law of parsimony that recommends selecting the
hypothesis that makes the fewest assumptions, implies that the 9 dimensional two-serotype model would be the better
candidate than the 25 dimensional four-serotype model to be analyzed, capturing the essential differences of primary
versus secondary infection without needing to restrict the ADE effect to one or another region in parameter space.

Dengvaxia was recommended by the World Health Organization (WHO) Strategic Advisory Group of
Experts (SAGE) on immunisation [23], based partially on modeling results [26], [27] estimating an overall
reduction of 10 − 30% of dengue hospitalizations, over a period of 30 years, when this vaccine is yearly
administrated in 80% of children (just) 9 years of age, living in high dengue endemic areas of more than
50% seroprevalence.

Opposing this prediction, Aguiar et al., have discussed the risks behind this vaccine recommendation [25],
[32], after analyzing an age structured model [28]. Using the public available vaccine trial data, vaccine
efficacy was estimated via the Bayesian approach [33], predicting a significant reduction of hospitalizations
only when the vaccine is given to seropositive individuals [28].

3.1. Vaccine efficacy estimation via the Bayesian approach
Using the data for the newly licensed dengue vaccine trial in the Asian-Pacific region (CYD14), with

participants age between 2-14, as reported in [34], and for the Latin America (CYD15), which has enrolled
individuals from 9-14 years of age, as reported in [35], we have estimated the vaccine efficacy (VE) via the
Bayesian approach [36], [37], to obtain explicitly a probability p(k|Iv, Ic ) for the vaccine efficacy k with
infected individuals (with Iv in the vaccine group and Ic in the placebo group). We obtained a statistical
description of the vaccine trial data that were in very good agreement with the published results for the
vaccine efficacy for confirmed dengue cases during the year 1 and 2 of the trials. The Bayesian estimates
of the vaccine efficacy for confirmed dengue cases during the years 1-2 in the CYD14 and CYD15 trials
is shown in Table 2. Note that the uninformed Bayesian prior might have a slight influence mainly in the
confidence interval values.

TABLE II: Bayesian estimates of the VE for confirmed dengue cases during the years 1-2 in the CYD14
and CYD15 trials

Published Estimates Our Estimates Ref
Latin America Region (CYD15) 56.5% 95%-CI (43.8;66.4) 56.56% 95%-CI (44.4;66.2) [28], [34]
Asian-Pacific Region (CYD14) 60.8% 95%-CI (52.0;68) 60.76% 95%-CI (52.2;70.5) [28], [35]
Overall VE (CYD14+CYD15) – 59.2% 95%-CI (52.4;66) [28], [33]

Using the combined data from Sanofi-Pasteurs dengue vaccine trials (CDY14 and CYD15) we estimated the
overall vaccine efficacy, via the Bayesian approach, to obtain a probability for the combined vaccine efficacy
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based on the empirical data from Asian-Pacific and the Latin American trials [34], [35]. The Bayesian estimate
of the combined vaccine efficacy trials is k = 59.2% with a 95%-CI of (52.4; 65.0) as shown in Table 2.

Using the same methodology, the specific vaccine efficacy against each dengue serotypes was analyzed,
revealing a scenario where any possible common efficacy for all serotypes is statistical excluded.

While results from years 12 have demonstrated an intermediate efficacy for confirmed dengue cases, in the
year 3, vaccine efficacy for hospitalized dengue cases was found to be considerably smaller for seronegative
individuals at baseline (individuals that have never been infected by a dengue virus prior to the vaccine trial)
than for individuals who were seropositive at baseline (individuals that have been infected by a dengue virus
prior to the vaccine trial) [23], [38]. Moreover, a negative vaccine efficacy was estimated, for the years 3
and 4 of the CYD14 trial, with vaccine disease-enhancement in younger children, which were in its majority
seronegatives [28], [32]. For a more detailed calculation, see [28], [37].

Note that the CYD14 is of interest given the possibility to evaluate both age groups, individuals under and
older 9 years of age. The Bayesian estimates of the vaccine efficacy for hospitalized dengue cases during the
years 3-4 in the CYD14 trial is shown in Table 3.

TABLE III: Bayesian estimates of the VE for hospitalized dengue cases during the years 3-4 in the CYD14
trial

CYD14 trial (age groups) Year VE estimation Ref
2-5 years 3 -520% 95%-CI (-5089;-14.1) [23], [28], [32], [38]
2-5 years 4 -40.8% 95%-CI (-253.5;36.8) [23], [28], [32], [38]
6-8 years 3 60% 95%-CI (-86;92.0) [23], [28], [32], [38]
6-8 years 4 0% 95%-CI (-153;57) [23], [28], [32], [38]
2-8 years 3 -55.4% 95%-CI (-318.1;33.3) [23], [28], [32], [38]
2-8 years 4 -18.1% 95%-CI (-117,1;32,3) [23], [28], [32], [38]
9-11 3 2.5% 95%-CI (-330.2;73.2) [23], [28], [32], [38]
9-11 4 -92.4% 95%-CI (-160.3;36.8) [23], [28], [32], [38]
11-14 3 75% 95%-CI (-74;98) [23], [28], [32], [38]
11-14 4 65% 95%-CI (0;89) [23], [28], [32], [38]
9-14 3 42.9% 95%-CI (-59.5;79.2) [23], [28], [32], [38]
9-14 4 27.2% 95%-CI (-49.9;63.5) [23], [28], [32], [38]

4. MODELING VACCINE IMPLEMENTATION

To model the future vaccine impact, the minimalistic two-strain dengue model [9] was extended. An age
structured model was developed based on the WHO recommendation to vaccinate persons age 9-45 years in
dengue endemic countries.The model is represented in Fig 4 using a state flow diagram, where the population
consists of a mixture of seronegative and seropositive individuals and only a percentage of individuals 9-45
years of age are vaccinated.

Similarly to the assumptions used in the WHO-SAGE modeling exercise, the model is constructed such the
vaccine in seronegative individuals acts like a asymptomatic natural (first) infection providing a short-term
protection against the four dengue serotypes. As the immunity wains, those individuals have high probability of
symptomatic and severe disease when acquiring a natural primary infection. Vaccine efficacy for seropositive
individuals was assumed to be close to 100%, preventing dengue infections and hospitalization of monotypic
dengue immune individuals. Although more data in respect to individual sero-status prior to vaccination are
still needed, for this analysis we have assumed that individuals of any age who have experienced at least
one dengue virus infection will benefit from vaccination but when seronegative, an increased risk of vaccine
disease enhancement exists.
Insights from our mathematical modeling have shown that high rates of reduction of hospitalizations can be
achieved when vaccinating only seropositive individuals. While dengue infections of seropositive individuals
will be prevented, vaccination of seronegative persons increases hospitalization (see Fig. 5). The detailed
modeling analysis can be found in [28]. The model parameters are shown in Table 4.

5. DISCUSSION

In this survey we analyzed a modeling framework and assumptions recently used to asses the impact of
the newly licensed dengue vaccine.
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Fig. 6: Flow diagram for age-structured two-infection two-serotype dengue model with vaccination. Hospitalizations are
only possible in the classes marked in red. The Force of Infection (FoI) is explicitly given by β(I1 + I2 + Ib1 + Ib2 +
Ie1 + Ie2 + ρN + φ(I12 + I21 + Ib12 + Ib21 + Ie12 + Ie21) + φv(Iv1 + Iv2.)).
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Fig. 7: Model simulation of hospitalizations in a population between 165 year-old. The last 5 years of available empirical
data (in purple) were matched with the model simulation prior to vaccination (in orange) and prediction was made for
the following 5 years, after vaccine implementation covering yearly 4% of the target group between 9-45 years of age,
from 2016 to 2021. Hospitalizations occurring after yearly vaccination of both seropositives and seronegatives, ages
9-45 years, are shown as a gray line. However, when restricting this vaccine to seropositive only, 9-45 years of age,
high rates of reduction of hospitalizations can be achieved (in blue). For this simulation, no extra risk of vaccine disease
enhancement, compared with hospitalizations of individuals hospitalized when acquiring a natural secondary infection,
was considered. However, if that would be the case, the number of hospitalization without population screening would
be much larger (see [28]).
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TABLE IV: Estimated parameter set via data matching

Par. Description Values Ref
N population size 1.65 million inhabitants [9], [28]
µ birth and death rate 1/65y [9], [28]
γ recovery rate 52y−1 [9], [28]
β effective infection rate 2γ [9], [28]
η degree of seasonality 0.35 [9], [28]
ϕ phase of seasonality 3/12y [9], [28]
ρ import parameter 10−8 [9], [28]
α temporary cross-immunity rate 2y−1 [9], [28]
φ = φv ratio of secondary infections

contributing to force of infection 0.9 [2], [3], [4], [9], [28], [31]
υ vaccination rate 1/1y [28], [34], [35], [38]
εp = εs proportion of vaccinated population 4% per year [28]
k1 estimated vaccine efficacy

for hospitalization under 9y −0.55 [28], [37], [38]
k2 estimated vaccine efficacy

for hospitalization older 9y 0.9 [28], [38]

Starting from a basic two-serotype SIR-type model for the host population, model extensions were in-
vestigated and the role of the detailed number of dengue serotypes to be included into the framework was
discussed. The minimalistic model proposed by Aguiar et al. [9] in its simplicity as a good model to be
analyzed, giving the expected complex behavior to explain the fluctuations observed in empirical data. It can
capture the essential differences of primary versus secondary infection without needing to restrict the ADE
effect to one or another region in parameter space. Moreover, the model has shown a qualitatively good result
when comparing empirical incidence data and model simulations, anticipating results published recently in
Duong et al. [31], where persons with unapparent dengue infections were more infectious to mosquitoes than
clinically symptomatic patients.

Focusing on the biological aspects of dengue fever epidemiology and its implications for model dynamics,
the analysis of the four-serotype dengue model [22] have shown that the combination of temporary cross-
immunity and ADE are the most important feature to drive the complex dynamics in the system, with chaotic
behavior appearing at the same parameter region of interest. By using the same parameter set, prediction
horizon was observed to be similar for both models, the two and four-serotypes models.

To be predictive and not get lost in unnecessary components of a model, parsimony is often needed. For
vaccine implementation, the two-serotype model with two possible infections was selected and extended.
Using similar assumptions as some models in the WHO-SAGE modeling consortia, our model [28] was
constructed assuming that individuals of any age who have experienced at least one dengue virus infection
would benefit from vaccination but when seronegative, an increased risk of vaccine disease enhancement
would be experienced.

Vaccine efficacy in preventing hospitalized dengue cases was estimated using the data available in [23],
[38], via the Bayesian approach [36], [37]. Chaotic behavior exists in many natural systems and in the case
of our deterministic system, whose behavior can in principle be predicted for approximately 10 years, model
was parameterized by matching the last 5 years of available empirical hospitalized dengue data for Chiang
Mai with model simulations and predictions for disease outcome after vaccine implementation were evaluated
for a period of 5 years. This time-frame seams to be acceptable, since neither seroprevalence nor vaccine
efficacy are static quantities, and therefore, a prediction of 30 years raises questions of the validity of the
recommendation by the WHO-SAGE.

Our results suggested that reserving vaccine for seropositive individuals should provide a high level of
protection whereas vaccinating indiscriminately could increase the number of hospitalizations also on the
population level.

We are concerned about seronegatives at any age receiving this vaccine and a question that needs to be
addressed at all prospective vaccination sites is which screening test to choose to identify seropositives, since
ELISA IgG tests vary in specificity [25], [32].

.
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